Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.123
Filter
2.
Sci Rep ; 14(1): 9509, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664521

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most significant causes of cancer-related deaths in the worldwide. Currently, predicting the survival of patients with HCC and developing treatment drugs still remain a significant challenge. In this study, we employed prognosis-related genes to develop and externally validate a predictive risk model. Furthermore, the correlation between signaling pathways, immune cell infiltration, immunotherapy response, drug sensitivity, and risk score was investigated using different algorithm platforms in HCC. Our results showed that 11 differentially expressed genes including UBE2C, PTTG1, TOP2A, SPP1, FCN3, SLC22A1, ADH4, CYP2C8, SLC10A1, F9, and FBP1 were identified as being related to prognosis, which were integrated to construct a prediction model. Our model could accurately predict patients' overall survival using both internal and external datasets. Moreover, a strong correlation was revealed between the signaling pathway, immune cell infiltration, immunotherapy response, and risk score. Importantly, a novel potential drug candidate for HCC treatment was discovered based on the risk score and also validated through ex vivo experiments. Our finds offer a novel perspective on prognosis prediction and drug exploration for cancer patients.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Humans , Immunotherapy/methods , Prognosis , Gene Expression Regulation, Neoplastic/drug effects , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Signal Transduction/drug effects
3.
BMC Cancer ; 24(1): 525, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664644

ABSTRACT

BACKGROUND: Regorafenib, a multi-targeted kinase inhibitor, has been used in the treatment of Hepatocellular carcinoma (HCC). The purpose of this study is to investigate the mechanism of Regorafenib in HCC. METHODS: Regorafenib's impact on the sensitivity of HCC cells was assessed using CCK8. Differential gene expression analysis was performed by conducting mRNA sequencing after treatment with Regorafenib. The m6A methylation status of CHOP and differential expression of m6A methylation-related proteins were assessed by RIP and Western Blot. To explore the molecular mechanisms involved in the therapeutic effects of Regorafenib in HCC and the impact of METTL14 and CHOP on Regorafenib treatment, we employed shRNA/overexpression approaches to transfect METTL14 and CHOP genes, as well as conducted in vivo experiments. RESULTS: Treatment with Regorafenib led to a notable decrease in viability and proliferation of SK-Hep-1 and HCC-LM3 cells. The expression level of CHOP was upregulated after Regorafenib intervention, and CHOP underwent m6A methylation. Among the m6A methylation-related proteins, METTL14 exhibited the most significant downregulation. Mechanistic studies revealed that Regorafenib regulated the cell cycle arrest in HCC through METTL14-mediated modulation of CHOP, and the METTL14/CHOP axis affected the sensitivity of HCC to Regorafenib. In vivo, CHOP enhanced the anticancer effect of Regorafenib. CONCLUSION: The inhibition of HCC development by Regorafenib is attributed to its modulation of m6A expression of CHOP, mediated by METTL14, and the METTL14/CHOP axis enhances the sensitivity of HCC to Regorafenib. These findings provide insights into the treatment of HCC and the issue of drug resistance to Regorafenib.


Subject(s)
Adenosine/analogs & derivatives , Carcinoma, Hepatocellular , Cell Cycle Checkpoints , Liver Neoplasms , Methyltransferases , Phenylurea Compounds , Pyridines , Transcription Factor CHOP , Humans , Pyridines/pharmacology , Pyridines/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Mice , Animals , Cell Line, Tumor , Cell Cycle Checkpoints/drug effects , Methyltransferases/metabolism , Methyltransferases/genetics , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Drug Resistance, Neoplasm/genetics , Xenograft Model Antitumor Assays , Mice, Nude
4.
Discov Med ; 36(183): 666-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665016

ABSTRACT

BACKGROUND: Primary liver cancer (PHC) stands as one of the most prevalent malignant diseases in clinical settings. Studies have indicated that transcatheter arterial chemoembolization (TACE) treatment exhibits superior clinical outcomes, potentially increasing the complete necrosis rate in patients with PHC. A correlation exists between the clinical outcomes of TACE surgery and the process of epithelial-mesenchymal transition (EMT), yet the underlying mechanism remains a mystery. Hence, it is crucial to investigate the impact and mechanism of EMT on hepatocellular carcinoma (HCC). METHODS: Retrospectively, patients with advanced liver cancer who underwent TACE were selected and categorized into two groups based on the assessment of clinical efficacy: the effective group and the ineffective group. The expression levels of nuclear factor-kappa B (NF-κB), matrix metalloproteinase 9 (MMP9), Ki-67, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), Vimentin, E-cadherin, and N-cadherin in tumor tissues were evaluated using reverse transcription-polymerase chain reaction (RT-PCR). In vitro, Huh7 cells were cultured, and lentivirus infections were utilized to inhibit the overexpression of NF-κB and MMP9. The determination of EMT and cell viability was conducted through Cell Counting Kit-8 (CCK-8) assays, RT-PCR, and Western blot. RESULTS: Sixty patients diagnosed with advanced liver cancer were selected for the study. Based on their clinical outcomes, 30 patients with advanced hepatocellular carcinoma were categorized into the effective group, while the remaining 30 patients were categorized into the ineffective group. The results of the Western blot analysis indicated that, in comparison to the effective group, the expression levels of NF-κB, MMP9, Ki-67, Bcl-2, Vimentin, and N-cadherin were significantly higher in the tumor tissues of the ineffective group. Conversely, the expression of Bax and E-cadherin was notably lower in the effective group. Following the individual knockdown of NF-κB and MMP9, the cell experiments revealed a remarkable decrease in the expression levels of Ki-67, Bcl-2, Vimentin, and N-cadherin, whereas the expression of Bax and E-cadherin showed significant elevation (p < 0.05). Furthermore, there was a significant increase in cell viability and a decrease in cell apoptosis after the knockdown of NF-κB and MMP9. CONCLUSIONS: The NF-κB/MMP9 signaling axis serves as a pivotal regulator that fosters proliferation and impedes apoptosis in Huh7 cells by modulating the process of EMT.


Subject(s)
Carcinoma, Hepatocellular , Epithelial-Mesenchymal Transition , Liver Neoplasms , Matrix Metalloproteinase 9 , NF-kappa B , Humans , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/therapy , NF-kappa B/metabolism , Matrix Metalloproteinase 9/metabolism , Male , Middle Aged , Female , Retrospective Studies , Cell Line, Tumor , Disease Progression , Signal Transduction , Aged , Gene Expression Regulation, Neoplastic , Cell Proliferation
5.
BMC Cancer ; 24(1): 475, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622578

ABSTRACT

BACKGROUND: Underlying liver disease is correlated with hepatocellular carcinoma (HCC) development in patients with hepatitis B virus (HBV) infection. However, the impact of hepatic inflammation and fibrosis on the patients' prognoses remains unclear. METHODS: The clinicopathological data of 638 HBV-infected patients with early-stage HCC between 2017 and 2019 were prospectively collected. Hepatic inflammation and fibrosis were evaluated by experienced pathologists using the Scheuer score system. Survival analysis was analyzed using the Kaplan-Meier analysis. RESULTS: Application of the Scheuer scoring system revealed that 50 (7.9%), 274 (42.9%), and 314 (49.2%) patients had minor, intermediate, and severe hepatic inflammation, respectively, and 125 (15.6%), 150 (23.5%), and 363 (56.9%) patients had minor fibrosis, advanced fibrosis, and cirrhosis, respectively. Patients with severe hepatitis tended to have a higher rate of HBeAg positivity, higher HBV-DNA load, elevated alanine aminotransferase (ALT) levels, and a lower proportion of capsule invasion (all Pp < 0.05). There were no significant differences in the recurrence-free and overall survival among the three groups (P = 0.52 and P = 0.66, respectively). Patients with advanced fibrosis or cirrhosis had a higher proportion of HBeAg positivity and thrombocytopenia, higher FIB-4, and larger tumor size compared to those with minor fibrosis (all P < 0.05). Patients with minor, advanced fibrosis, and cirrhosis had similar prognoses after hepatectomy (P = 0.48 and P = 0.70). The multivariate analysis results indicated that neither hepatic inflammation nor fibrosis was an independent predictor associated with prognosis. CONCLUSIONS: For HBV-related HCC patients receiving antiviral therapy, hepatic inflammation and fibrosis had little impact on the post-hepatectomy prognosis.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/genetics , Liver Neoplasms/pathology , Hepatectomy/adverse effects , Hepatectomy/methods , Hepatitis B e Antigens , Disease-Free Survival , Retrospective Studies , Hepatitis B/complications , Liver Cirrhosis/complications , Liver Cirrhosis/surgery , Inflammation/complications , Hepatitis B, Chronic/complications
6.
Technol Cancer Res Treat ; 23: 15330338241239188, 2024.
Article in English | MEDLINE | ID: mdl-38634139

ABSTRACT

Globally, hepatic cancer ranks fourth in terms of cancer-related mortality and is the sixth most frequent kind of cancer. Around 80% of liver cancers are hepatocellular carcinomas (HCC), which are the leading cause of cancer death. It is well known that HCC may develop resistance to the available chemotherapy treatments very fast. One of the biggest obstacles in providing cancer patients with appropriate care is drug resistance. According to reports, more than 90% of cancer-specific fatalities are caused by treatment resistance. By binding to the 3'-untranslated region of target messenger RNAs (mRNAs), microRNAs (miRNAs), a group of noncoding RNAs which are around 17 to 25 nucleotides long, regulate target gene expression. Moreover, they play role in the control of signaling pathways, cell proliferation, and cell death. As a result, miRNAs play an important role in the microenvironment of HCC by changing immune phenotypes, hypoxic conditions, and acidification, as well as angiogenesis and extracellular matrix components. Moreover, changes in miRNA levels in HCC can effectively resist cancer cells to chemotherapy by affecting various cellular processes such as autophagy, apoptosis, and membrane transporter activity. In the current work, we narratively reviewed the role of miRNAs in HCC, with a special focus on tumor microenvironment and drug resistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , MicroRNAs/genetics , Tumor Microenvironment , Drug Resistance , Gene Expression Regulation, Neoplastic
7.
Cancer Med ; 13(8): e7200, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634194

ABSTRACT

BACKGROUND: Recently, increasing data have suggested that the lncRNA small nucleolar RNA host genes (SNHGs) were aberrantly expressed in hepatocellular carcinoma (HCC), but the association between the prognosis of HCC and their expression remained unclear. The purpose of this meta-analysis was to determine the prognostic significance of lncRNA SNHGs in HCC. METHODS: We systematically searched Embase, Web of Science, PubMed, and Cochrane Library for eligible articles published up to February 2024. The prognostic significance of SNHGs in HCC was evaluated by hazard ratios (HRs) and 95% confidence intervals (CIs). Odds ratios (ORs) were used to assess the clinicopathological features of SNHGs. RESULTS: This analysis comprised a total of 25 studies covering 2314 patients with HCC. The findings demonstrated that over-expressed SNHGs were associated with larger tumor size, multiple tumor numbers, poor histologic grade, earlier lymphatic metastasis, vein invasion, advanced tumor stage, portal vein tumor thrombosis (PVTT), and higher alpha-fetoprotein (AFP) level, but not with hepatitis B virus (HBV) infection, and cirrhosis. In terms of prognosis, patients with higher SNHG expression were more likely to have shorter overall survival (OS), relapse-free survival (RFS), and disease-free survival (DFS). CONCLUSIONS: In conclusion, upregulation of SNHGs expression correlates with shorter OS, RFS, DFS, tumor size and numbers, histologic grade, lymphatic metastasis, vein invasion, tumor stage, PVTT, and AFP level, suggesting that SNHGs may serve as prognostic biomarkers in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , RNA, Long Noncoding/genetics , Liver Neoplasms/pathology , Prognosis , alpha-Fetoproteins , RNA, Small Nucleolar , Lymphatic Metastasis , Neoplasm Recurrence, Local , Biomarkers, Tumor/genetics
8.
PLoS One ; 19(4): e0296198, 2024.
Article in English | MEDLINE | ID: mdl-38635644

ABSTRACT

Robust prognostic and predictive factors for hepatocellular carcinoma, a leading cause of cancer-related deaths worldwide, have not yet been identified. Previous studies have identified potential HCC determinants such as genetic mutations, epigenetic alterations, and pathway dysregulation. However, the clinical significance of these molecular alterations remains elusive. MicroRNAs are major regulators of protein expression. MiRNA functions are frequently altered in cancer. In this study, we aimed to explore the prognostic value of differentially expressed miRNAs in HCC, to elucidate their associated pathways and their impact on treatment response. To this aim, bioinformatics techniques and clinical dataset analyses were employed to identify differentially expressed miRNAs in HCC compared to normal hepatic tissue. We validated known associations and identified a novel miRNA signature with potential prognostic significance. Our comprehensive analysis identified new miRNA-targeted pathways and showed that some of these protein coding genes predict HCC patients' response to the tyrosine kinase inhibitor sorafenib.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Prognosis , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic
9.
Aging (Albany NY) ; 16(7): 6537-6549, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579170

ABSTRACT

BACKGROUND: Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. METHODS: Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). RESULTS: HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. CONCLUSION: This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/mortality , Liver Neoplasms/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Prognosis , Biomarkers, Tumor/genetics , Nomograms , Male , Female , Gene Expression Regulation, Neoplastic , Middle Aged
10.
Aging (Albany NY) ; 16(7): 6550-6565, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38604154

ABSTRACT

BACKGROUND: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune microenvironment of HCC is of great significance to probe the molecular mechanisms. METHODS: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. Special cell subpopulations were determined by the expression levels of marker genes. Differential expression analysis was conducted. The activity of each subpopulation was determined based on the highly expressed genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. A single-cell regulatory network inference and clustering analysis was also performed to determine the transcription factor regulatory networks in the CTLA4+ T cell subpopulations. RESULTS: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, which were activated, was present in CTLA4+ T cells. CONCLUSION: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3.


Subject(s)
Carcinoma, Hepatocellular , Killer Cells, Natural , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Tumor Microenvironment/immunology , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
BMC Gastroenterol ; 24(1): 142, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654165

ABSTRACT

OBJECTIVES: Cuproptosis represents an innovative type of cell death, distinct from apoptosis, driven by copper dependency, yet the involvement of copper apoptosis-associated long non-coding RNAs (CRLncRNAs) in hepatocellular carcinoma (HCC) remains unclear. This study is dedicated to unveiling the role and significance of these copper apoptosis-related lncRNAs within the context of HCC, focusing on their impact on both the development of the disease and its prognosis. METHODS: We conducted an analysis of gene transcriptomic and clinical data for HCC cases by sourcing information from The Cancer Genome Atlas database. By incorporating cuproptosis-related genes, we established prognostic features associated with cuproptosis-related lncRNAs. Furthermore, we elucidated the mechanism of cuproptosis-related lncRNAs in the prognosis and treatment of HCC through comprehensive approaches, including Lasso and Cox regression analyses, survival analyses of samples, as well as examinations of tumor mutation burden and immune function. RESULTS: We developed a prognostic model featuring six cuproptosis-related lncRNAs: AC026412.3, AC125437.1, AL353572.4, MKLN1-AS, TMCC1-AS1, and SLC6A1-AS1. This model demonstrated exceptional prognostic accuracy in both training and validation cohorts for patients with tumors, showing significantly longer survival times for those categorized in the low-risk group compared to the high-risk group. Additionally, our analyses, including tumor mutation burden, immune function, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and drug sensitivity, further elucidated the potential mechanisms through which cuproptosis-associated lncRNAs may influence disease outcome. CONCLUSIONS: The model developed using cuproptosis-related long non-coding RNAs (lncRNAs) demonstrates promising predictive capabilities for both the prognosis and immunotherapy outcomes of tumor patients. This could play a crucial role in patient management and the optimization of immunotherapeutic strategies, offering valuable insights for future research.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Prognosis , Copper , Apoptosis/genetics , Male , Biomarkers, Tumor/genetics , Female , Gene Expression Regulation, Neoplastic , Transcriptome , Survival Analysis
12.
BMC Med Genomics ; 17(1): 103, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654290

ABSTRACT

BACKGROUND: Hepatocellular carcinoma represents a significant global burden in terms of cancer-related mortality, posing a substantial risk to human health. Despite the availability of various treatment modalities, the overall survival rates for patients with hepatocellular carcinoma remain suboptimal. The objective of this study was to explore the potential of novel biomarkers and to establish a novel predictive signature utilizing multiple transcriptome profiles. METHODS: The GSE115469 and CNP0000650 cohorts were utilized for single cell analysis and gene identification. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets were utilized in the development and evaluation of a predictive signature. The expressions of hepatocyte-specific genes were further validated using the GSE135631 cohort. Furthermore, immune infiltration results, immunotherapy response prediction, somatic mutation frequency, tumor mutation burden, and anticancer drug sensitivity were analyzed based on various risk scores. Subsequently, functional enrichment analysis was performed on the differential genes identified in the risk model. Moreover, we investigated the expression of particular genes in chronic liver diseases utilizing datasets GSE135251 and GSE142530. RESULTS: Our findings revealed hepatocyte-specific genes (ADH4, LCAT) with notable alterations during cell maturation and differentiation, leading to the development of a novel predictive signature. The analysis demonstrated the efficacy of the model in predicting outcomes, as evidenced by higher risk scores and poorer prognoses in the high-risk group. Additionally, a nomogram was devised to forecast the survival rates of patients at 1, 3, and 5 years. Our study demonstrated that the predictive model may play a role in modulating the immune microenvironment and impacting the anti-tumor immune response in hepatocellular carcinoma. The high-risk group exhibited a higher frequency of mutations and was more likely to benefit from immunotherapy as a treatment option. Additionally, we confirmed that the downregulation of hepatocyte-specific genes may indicate the progression of hepatocellular carcinoma and aid in the early diagnosis of the disease. CONCLUSION: Our research findings indicate that ADH4 and LCAT are genes that undergo significant changes during the differentiation of hepatocytes into cancer cells. Additionally, we have created a unique predictive signature based on genes specific to hepatocytes.


Subject(s)
Carcinoma, Hepatocellular , Hepatocytes , Liver Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Biomarkers, Tumor/genetics , Sequence Analysis, RNA , Gene Expression Regulation, Neoplastic , Transcriptome , Gene Expression Profiling , Prognosis , Male
13.
J Enzyme Inhib Med Chem ; 39(1): 2343350, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38655602

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. FGFR4 has been implicated in HCC progression, making it a promising therapeutic target. We introduce an approach for identifying novel FGFR4 inhibitors by sequentially adding fragments to a common warhead unit. This strategy resulted in the discovery of a potent inhibitor, 4c, with an IC50 of 33 nM and high selectivity among members of the FGFR family. Although further optimisation is required, our approach demonstrated the potential for discovering potent FGFR4 inhibitors for HCC treatment, and provides a useful method for obtaining hit compounds from small fragments.


Subject(s)
Dose-Response Relationship, Drug , Drug Discovery , Receptor, Fibroblast Growth Factor, Type 4 , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Humans , Structure-Activity Relationship , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism
14.
Front Immunol ; 15: 1393801, 2024.
Article in English | MEDLINE | ID: mdl-38660302

ABSTRACT

Background: Human tumors pose significant challenges, with targeted therapy against specific molecular targets or signaling pathways being a mainstay alongside surgical resection. Previous studies have implicated KHDRBS1 in the oncogenesis of certain human tumors such as colorectal and prostate cancers, underscoring its potential as a therapeutic target. However, the comprehensive expression pattern of KHDRBS1 in hepatocellular carcinoma (HCC) warrants further exploration. Methods: Integrating and analyzing multi-omics, multi-cohort data from public databases, coupled with clinical samples and molecular biology validation, we elucidate the oncogenic role of KHDRBS1 in HCC progression. Additionally, leveraging HCC single-cell sequencing data, we segregate malignant cells into KHDRBS1-positive and negative subsets, uncovering significant differences in their expression profiles and functional roles. Results: Our study identifies KHDRBS1 as a tumor-promoting factor in HCC, with its positivity correlating with tumor progression. Furthermore, we highlight the clinical significance of KHDRBS1-positive malignant cells, aiming to further propel its clinical utility. Conclusion: KHDRBS1 plays a key role in HCC development. This study provides crucial insights for further investigation into KHDRBS1 as a therapeutic target in HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Cell Movement , Cell Proliferation , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Tumor Microenvironment/immunology , Prognosis , Signal Transduction , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Male
15.
Technol Cancer Res Treat ; 23: 15330338241245943, 2024.
Article in English | MEDLINE | ID: mdl-38660703

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a serious health concern because of its high morbidity and mortality. The prognosis of HCC largely depends on the disease stage at diagnosis. Computed tomography (CT) image textural analysis is an image analysis technique that has emerged in recent years. OBJECTIVE: To probe the feasibility of a CT radiomic model for predicting early (stages 0, A) and intermediate (stage B) HCC using Barcelona Clinic Liver Cancer (BCLC) staging. METHODS: A total of 190 patients with stages 0, A, or B HCC according to CT-enhanced arterial and portal vein phase images were retrospectively assessed. The lesions were delineated manually to construct a region of interest (ROI) consisting of the entire tumor mass. Consequently, the textural profiles of the ROIs were extracted by specific software. Least absolute shrinkage and selection operator dimensionality reduction was used to screen the textural profiles and obtain the area under the receiver operating characteristic curve values. RESULTS: Within the test cohort, the area under the curve (AUC) values associated with arterial-phase images and BCLC stages 0, A, and B disease were 0.99, 0.98, and 0.99, respectively. The overall accuracy rate was 92.7%. The AUC values associated with portal vein phase images and BCLC stages 0, A, and B disease were 0.98, 0.95, and 0.99, respectively, with an overall accuracy of 90.9%. CONCLUSION: The CT radiomic model can be used to predict the BCLC stage of early-stage and intermediate-stage HCC.


Subject(s)
Carcinoma, Hepatocellular , Feasibility Studies , Liver Neoplasms , Neoplasm Staging , ROC Curve , Tomography, X-Ray Computed , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Male , Tomography, X-Ray Computed/methods , Female , Middle Aged , Aged , Retrospective Studies , Prognosis , Adult , Image Processing, Computer-Assisted/methods , Area Under Curve , 60570
16.
Sci Rep ; 14(1): 9068, 2024 04 20.
Article in English | MEDLINE | ID: mdl-38643245

ABSTRACT

Due to the comprehensive hepatitis B virus vaccination program in Taiwan since 1986, the development of antiviral therapy for chronic hepatitis B and chronic hepatitis C infection and covered by National health insurance. Besides, the increased prevalence of nonalcoholic fatty liver disease (NAFLD) and currently, approved therapy for NAFLD remain developing. The etiology of liver-related diseases such as cirrhosis and hepatocellular carcinoma required reinterpretation. This study aimed to analyze the incidence and outcome of hepatocellular carcinoma (HCC) due to viral (hepatitis B and hepatitis C) infection compared to that of nonviral etiology. We retrospectively analyzed patients with HCC from January 2011 to December 2020 from the cancer registry at our institution. Viral-related hepatitis was defined as hepatitis B surface antigen positivity or anti-hepatitis C virus (HCV) antibody positivity. A total of 2748 patients with HCC were enrolled, of which 2188 had viral-related HCC and 560 had nonviral-related HCC. In viral HCC group, the median age at diagnosis was significantly lower (65 years versus 71 years, p < 0.001), and the prevalence of early-stage HCC, including stage 0 and stage A Barcelona Clinic Liver Cancer, was significantly higher (52.9% versus 33.6%, p < 0.001). In nonviral HCC group, alcohol use was more common (39.9% versus 30.1%, p < 0.001), the prevalence of type 2 diabetes mellitus (T2DM) was higher (54.5% versus 35.1%, p < 0.001), and obesity was common (25.0% versus 20.5%, p = 0.026). The prevalence of nonviral HCC increased significantly from 19.2 to 19.3% and 23.0% in the last 10 years (p = 0.046). Overall survival was better in the viral HCC group (5.95 years versus 4.00 years, p < 0.001). In the early stage of HCC, overall survival was still better in the viral HCC group (p < 0.001). The prevalence of nonviral HCC has significantly increased in the last ten years. The overall survival was significantly lower in the nonviral HCC, perhaps because the rate of early HCC detection is lower in nonviral HCC and anti-viral therapy. To detect nonviral HCC early, we should evaluate liver fibrosis in high-risk groups (including people with obesity or T2DM with NAFLD/NASH and alcoholic liver disease) and regular follow-up for those with liver fibrosis, regardless of cirrhosis.


Subject(s)
Carcinoma, Hepatocellular , Diabetes Mellitus, Type 2 , Hepatitis C , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Aged , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Retrospective Studies , Diabetes Mellitus, Type 2/complications , Prevalence , Hepatitis C/complications , Liver Cirrhosis/complications , Obesity/complications
17.
Sci Rep ; 14(1): 9128, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644382

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Macrophage-mediated innate immune responses play a crucial role in tumor development. This study revealed the mechanism of SHP-1 in regulating HCC progression. SHP-1 inhibits tumour development in vivo. Increasing SHP-1 expression in macrophages promotes the expression of p-SHP-1, SHP2, and p-SHP-2. In macrophages GM-CSF recruits SHP-2 to the GM-CSF receptor GM-CSFR induces p-SHP-2 dephosphorylation. GM-CSF recruits p-SHP-2 for dephosphorylation by up-regulating HoxA10HOXA10 activates the transcription of TGFß2 by interacting with tandem cis-elements in the promoter thereby regulating the proliferation and migration of liver cancer cells. GM-CSF inhibits SHP-1 regulation of p-SHP-1, SHP2, and p-SHP-2 in macrophages. Detailed studies have shown that SHP-1 regulates SHP2 expression, and SHP-1 and SHP2 are involved in macrophage M2 polarisation. SHP-1 inhibits HOXA10 and TGFß2 which in turn regulates the expression of the migration-associated proteins, MMP2/9, and the migration of hepatocellular carcinoma cells. Overexpression of SHP-1 inhibits macrophage M2 polarisation via the p-STAT3/6 signalling pathway Classical markers arginase-1, CD206, CD163 and regulate the expression of M2 polarisation cytokines IL-4 and IL-10. In addition, hypoxia-induced ROS inhibited SHP-1 regulation by suppressing the expression of p-SHP-1. The combined effect of GM-CSF and ROS significantly increased p-HOXA10/TGFß2 and macrophage M2 polarisation, and the regulatory effect of ROS was significantly suppressed by GM-CSF knockdown. These findings suggest that increasing the expression of tyrosine phosphatase SHP-1 can inhibit hepatocellular carcinoma progression by modulating the SHP2/GM-CSF pathway in TAM and thus inhibit the progression of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Granulocyte-Macrophage Colony-Stimulating Factor , Liver Neoplasms , Macrophages , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , Signal Transduction , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Humans , Animals , Macrophages/metabolism , Macrophages/immunology , Mice , Disease Progression , Cell Line, Tumor , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
18.
J Cell Mol Med ; 28(8): e18304, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652093

ABSTRACT

Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.


Subject(s)
Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Prognosis , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Gene Expression Profiling , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
19.
J Cell Mol Med ; 28(8): e18335, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38652216

ABSTRACT

Management of hepatocellular carcinoma (HCC) remains challenging due to population growth, frequent recurrence and drug resistance. Targeting of genes involved with the ferroptosis is a promising alternative treatment strategy for HCC. The present study aimed to investigate the effect of dihydroartemisinin (DHA) against HCC and explore the underlying mechanisms. The effects of DHA on induction of ferroptosis were investigated with the measurement of malondialdehyde concentrations, oxidised C11 BODIPY 581/591 staining, as well as subcutaneous xenograft experiments. Activated transcription factor 4 (ATF4) and solute carrier family 7 member 11 (SLC7A11 or xCT) were overexpressed with lentiviruses to verify the target of DHA. Here, we confirmed the anticancer effect of DHA in inducing ferroptosis is related to ATF4. High expression of ATF4 is related to worse clinicopathological prognosis of HCC. Mechanistically, DHA inhibited the expression of ATF4, thereby promoting lipid peroxidation and ferroptosis of HCC cells. Overexpression of ATF4 rescued DHA-induced ferroptosis. Moreover, ATF4 could directly bound to the SLC7A11 promoter and increase its transcription. In addition, DHA enhances the chemosensitivity of sorafenib on HCC in vivo and in vitro. These findings confirm that DHA induces ferroptosis of HCC via inhibiting ATF4-xCT pathway, thereby providing new drug options for the treatment of HCC.


Subject(s)
Activating Transcription Factor 4 , Amino Acid Transport System y+ , Artemisinins , Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Ferroptosis/drug effects , Artemisinins/pharmacology , Artemisinins/therapeutic use , Activating Transcription Factor 4/metabolism , Activating Transcription Factor 4/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Animals , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Male , Mice, Nude , Sorafenib/pharmacology , Sorafenib/therapeutic use , Female , Mice, Inbred BALB C
20.
J Viral Hepat ; 31 Suppl 1: 26-34, 2024 04.
Article in English | MEDLINE | ID: mdl-38606944

ABSTRACT

Adeno-associated virus (AAV)-based gene therapies are in clinical development for haemophilia and other genetic diseases. Since the recombinant AAV genome primarily remains episomal, it provides the opportunity for long-term expression in tissues that are not proliferating and reduces the safety concerns compared with integrating viral vectors. However, AAV integration events are detected at a low frequency. Preclinical studies in mouse models have reported hepatocellular carcinoma (HCC) after systemic AAV administration in some settings, though this has not been reported in large animal models. The risk of HCC or other cancers after AAV gene therapy in clinical studies thus remains theoretical. Potential risk factors for HCC after gene therapy are beginning to be elucidated through animal studies, but their relevance to human studies remains unknown. Studies to investigate the factors that may influence the risk of oncogenesis as well as detailed investigation of cases of cancer in AAV gene therapy patients will be important to define the potential risk of AAV genotoxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Liver Neoplasms/therapy , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Genetic Vectors , Plasmids , Genetic Therapy , Dependovirus/genetics , Dependovirus/metabolism , Virus Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...